

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S2 Paper WST02/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021 Question Paper Log number P63151A Publications Code WST02_01_2106_MS All the material in this publication is copyright © Pearson Education Ltd 2021

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

https://xtremepape.rs/

Ques			Scheme		Marks				
Nun		roughout the paper the candidates may use different letters to the ones given in the mark s							
1.) $[X \sim$ the number of pansy seeds that do not germinate or $Y =$ the numberthat <u>do germinate</u>]							
	. ,	$X \sim B(20, 0.05)$ or $Y \sim B(20, 0.05)$			B 1				
	(i)	$P(X \leq 4) - P(X \leq 2) = 0.9974 - 0.9245 \text{ or}$							
		$\binom{20}{3} 0.05^{3} \times 0.95^{17} + \binom{20}{4} 0.05^{4} \times 0.95^{16} = 0.05958 + 0.01332$			M1				
	(3) (4) = 0.072909 awrt 0.07 2				A1				
	(ii)	$P(X \leq 1) \qquad \underline{or} P(Y \geq 1)$		$(5)^{20}$	M1				
		= 0.7358	= 0.735839	awrt 0.736	A1 (5)				
	(b)								
	(b)	[Let $W =$ no. of packets where Y			M1				
			= 0.21573	awrt <u>0.216</u>	A1 (2)				
					(2)				
	(c)	$H_0: p = 0.05$ $H_1: p > 0.05$			B1				
					(1)				
	(d)	[V= no. of seeds that do not germi	note $V_{\rm c} \mathbf{P}(100, 0.05)$ approx	$V = P_0(5)$	M1A1				
	(4)	[r - 10.01 seeds that do not germin			IVITAT				
		$P(V \ge 8) = 1 - P(V < 7)$	$\frac{\text{CR for 1-tail in (c)}}{P(V \ge 9) = 0.0681}$	$P(V \ge 10) = 0.0318$	M1				
		= 1 - 0.8666	$P(V \ge 10) = 0.0318$	$P(V \ge 11) = 0.0137$	1411				
		P(V ≥ 8) = 1-P(V ≤ 7) = 1-0.8666 = 0.1334	$CR V \ge 100 = 0.0510$	$\Gamma(V \ge 11) = 0.0157$ CR $V \ge 11$ oe	A1				
		Accept H_0 or not significant or			dM1				
		Data consistent with Spany's clai	m or Insufficient evidence for	or <i>Jem's</i> belief	Alcso				
		or insufficient evidence that per	centage of seeds not germinat	ing is more than 5% (o.e.)	(6) Total 14				
		Notes							
	(a)	B1: writing or using B(20,0.05)		clearly defined]. Implied by 1 c	orrect prob.				
	(i)	M1: for $P(X \le 4) - P(X \le 2)$ as	nd one correct prob. or $P(X)$	= 3) + P(X = 4) and 1 correct pr	rob.				
		M1: for $P(X \le 4) - P(X \le 2)$ and one correct prob. or $P(X=3) + P(X=4)$ and 1 correct prob.							
(ii) M1: for $P(X \le 1)$ or $[20] \times (0.95)^{19} (0.05) + (0.95)^{20}$ - condone missing 20									
	(b)	M1: for $(\text{their}(a)(ii))^5$							
	(0)	MI: for $(\text{therf}(a)(n))$							
	(c)	B1: both hypotheses correct with p or π							
	(d)	1 st M1: for realising a Poisson app 1 st A1: writing or using V_{2} , Po(5)		NB Po(95) is 1	M0A0				
		1 st A1: writing or using $V \sim Po(5)$ i.e correct mean for the Poisson. 2 nd M1: for writing or using $1 - P(V \leq 7)$ or $P(V \leq 7) = 0.8666$							
		$\underbrace{\text{or writing or using 1-P}(V \ge 7) \xrightarrow{\text{or }} P(V \ge 7) = 0.0681 \text{ or } P(V \ge 11) = 0.0137 \text{ leading to a CR.}$							
		Implied by correct CR or probability = awrt 0.133							
		2nd A1 : for awrt 0.133 or $V \ge 10$ or (e.g. $V \ge 9$) or $V \ge 11$ or allow any letter but CR must match part(c)							
		3^{rd} dM1: dep on 2^{nd} M1. ft their CR or probability. A correct statement based on comparing 8 with their CR or their prob with 0.05 or 0.025 [condone 0.866<0.95] contradicting non-contextual comments M0							
		or their prob with 0.05 or 0.025 [condone 0.866<0.95]– contradicting non-contextual comments M0 3rd A1 cso : all previous marks must be awarded. A correct statement in context. Need Bold words .							
		NB award M1A1 for a correct contextual statement on its own.							
		If there are no hypotheses or they are the wrong way around, then 3 rd M0 3 rd A0							
Normal approximation: Award marks in pairs with 2, 4 or 6 marks available				arks available					
	SC1		-						
	SC1 SC2	Normal approximation: Award 5 Sight of N(5 or 95, $\sqrt{4.75}^2$) M No approximation: Use of B(10	1A1; probability awrt 0.125/6	M1A1; Correct contextual cond					

Question	Scheme	Marks		
Number2. (a)	[X = number of faults in 4 m ² so $X \sim Po(3)$]			
	$P(X = 5) = P(X \le 5) - P(X \le 4) [= 0.9161 - 0.8153] \underline{\text{or}} \frac{e^{-3}3^5}{5!} (\text{allow } \lambda \text{ instead of } 3)$ = 0.1008 $\underline{\text{or}} 0.100818 \text{awrt} \underline{0.101}$	M1 A1 (2)		
(b)	$[Y = \text{number of faults in 6 m}^2 \text{ so}] Y \sim \text{Po}(4.5) \text{ and } [P(Y > 5)] = 1 - P(Y \le 5) [= 1 - 0.7029]$ = 0.2971 or (calc) 0.29706956 awrt 0.297	M1 A1 (2)		
(c)	<u>0.101</u> (or ft their answer to (a)) Faults occur independently / randomly	B1ft B1 (2)		
(d)	$[F = \text{number of faults in a small rug}] F \sim \text{Po}(0.9)$ $e^{-"0.9"} n \times 80 + (1 - e^{-"0.9"}) n \times 60 \ge 4000 \text{ or } (\text{awrt } 0.407) n \times 80 + (\text{awrt } 0.593) n \times 60 \ge 4000$	B1 M1		
	$n \ge \frac{4000}{20e^{-"0.9"} + 60} = 58.71$ $n = \underline{59}$	M1 A1 (4)		
(e)	$\begin{array}{ll} H_{0}: \lambda = 9 & H_{1}: \lambda > 9 \\ R \sim \operatorname{Po}("0.9"\times10) & \underline{\operatorname{and}} & [\operatorname{P}(R \geqslant 13)] = 1 - \operatorname{P}(R \leqslant 12) & [= 1 - 0.8758] \\ \operatorname{P}(R \leqslant 13) = 0.9261 & \underline{\operatorname{or}} & \operatorname{P}(R \geqslant 14) = 0.0739 & \underline{\operatorname{or}} & \operatorname{P}(R \leqslant 14) = 0.9585 & \underline{\operatorname{or}} & \operatorname{P}(R \geqslant 15) = \\ 0.0415 & [\operatorname{P}(R \geqslant 13)] = 0.1242 & \operatorname{awrt} 0.124 & \underline{\operatorname{or}} & \operatorname{CR} & R \geqslant 15 \text{ (oe)} \\ \text{so insufficient evidence to reject } H_{0} / \text{not significant/ not in critical region} \\ \end{array}$ There is insufficient evidence that the rate at which faults occur is higher for Rhiannon	B1 M1 A1 M1 A1 (5)		
	Notes	Total 15		
(a)	M1: for using or writing $P(X \le 5) - P(X \le 4)$ or $\frac{e^{-\lambda}\lambda^5}{5!}$ (Accept letter λ or any value of	`λ)		
(b)	M1: writing or using Po(4.5) and sight of $[P(Y > 5)] = 1 - P(Y \le 5)$ Implied by sight of $1 - 0.7$			
(c) 2 nd B1: for a comment about faults occurring randomly/independently <u>or</u> Poisson has "no m				
(d)	B1: writing or using Po(0.9) May be implied by sight of 0.407 or 0.593 1 st M1: for $e^{-\lambda}n \times 80 + (1 - e^{-\lambda})n \times 60 > 4000$ any value for λ . Allow = 4000 2 nd M1: for solving their equation leading to a positive value of <i>n</i> . Allow any value of λ and allow $n =$ A1: for an answer of 59 only			
(e)	 (e) B1: both hypotheses correct with λ or μ. Allow 3 or 0.75 or 0.9 instead of 9 1st M1: for writing or using Po("9") and writing or using 1 - P(R ≤ 12) (implied by 1 - 0.8758) or or P(R ≤ 13) = 0.9261, P(R ≥ 14) = 0.0739, P(R ≤ 14) = 0.9585, P(R ≥ 15) = 0.0415 leading to CR 1st A1: for probability = awrt 0.124 or CR of R ≥ 15 oe e.g. R > 14 2nd M1: for a correct conclusion based on their prob & 0.05 or their CR & 13. Assume correct hypothe Do not allow contradicting conclusions 2nd A1: dep on both Ms for a correct contextual comment including the words in bold. 			

https://xtremepape.rs/

Question Number	Scheme				
3. (a)	12/25 -	M1			
		A1 (2)			
(b)	$\frac{d\left(\frac{3}{50}\left(4y^2 - y^3\right)\right)}{dy} = \frac{3}{50}\left(8y - 3y^2\right)$	M1			
	$\frac{3}{50}(8y-3y^2)=0$; $y=\frac{8}{3}$ oe	M1; A1 (3)			
(c)	$E(Y^{2}) = \int_{1}^{2} \left(\frac{6}{25}y^{3} - \frac{6}{25}y^{2}\right) dy + \int_{2}^{4} \left(\frac{12}{50}y^{4} - \frac{3}{50}y^{5}\right) dy$	M1			
	$= \left[\frac{6}{100}y^4 - \frac{6}{75}y^3\right]_1^2 + \left[\frac{12}{250}y^5 - \frac{3}{300}y^6\right]_2^4$	A1			
	$= \left\lfloor \left(\frac{8}{25}\right) - \left(-\frac{1}{50}\right) \right\rfloor + \left\lfloor \left(\frac{1024}{125}\right) - \left(\frac{112}{125}\right) \right\rfloor ; \qquad = \frac{1909}{250} \text{or} \underline{7.636} \text{or} \underline{7.64}$	dM1; A1 (4)			
(d)	$Var(Y) = "\frac{1909}{250}" - 2.696^2$	M1			
	= 0.367584 awrt <u>0.368</u>	A1 (2)			
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \text{or} \int_{1}^{x} \frac{6}{25}(y-1) \mathrm{d}y = 0.1$	M1			
	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1) = 0.1 \underline{\text{or}} \frac{6}{25} \left[\left(\frac{x^2}{2} - x \right) + \frac{1}{2} \right] = 0.1 \underline{\text{or}} \frac{6}{50}(x-1)^2 = 0.1$	A1			
	$(y-1)^2 = \frac{5}{6} \text{ or } y = 1 \pm \sqrt{\frac{5}{6}}$; $y = 1.9128$ awrt <u>1.91</u>	dM1; A1			
		(4) Total 15			
(a)	Notes M1: the two parts must be the right shape and not joined. Ignore labels and condone if it goes below x - axis				
(b)	A1: for 6/25, 12/25, 1, 2 and 4 and must not go beyond 4 or < 1 [Can allow "freehand" straight line] 1 st M1: for attempting to differentiate $y^n \rightarrow y^{n-1}$ for $n = 2$ or 3				
	2nd M1: for equating their differential (\neq f(y)) to zero and an attempt at solving so must reach y =				
	A1: for $\frac{8}{3}$ oe and allow awrt 2.67 If $y = 0$ is seen it must be rejected.				
(c)	1 st M1: for using $\int y^2 f(y)$ for both parts, <u>and</u> an attempt at integration (some $y^n \to y^{n+1}$) Ignore limits.				
	 1st A1: for correct integration for both parts. Ignore limits. 2nd dM1: dep on 1st M1 for adding the 2 parts together <u>and</u> substituting the correct limits in to each part. 2nd A1: allow 7.64 or 7.636 You will need to check that they have used algebraic integration. 				
(d)	M1: for "their part(c)" -2.696^{2} A1: for awrt 0.368				
(e)	1 st M1: allow $\frac{1}{2}t \times \frac{6}{25}(t-1) = 0.1$ or $\int_{1}^{x} \frac{6}{25}(y-1) dy = 0.1$ and some integration and sub' of 1 and x				
	 1st A1: for a correct equation in any form 2nd dM1: dependent on 1st M1 for a correct method for solving their equation. Implied by correct answer. 2nd A1: for awrt 1.91 (second solution should be rejected) 				

Question Number	Scheme					Marks
4.	[A = the number on the ball] $P(A = 1) = \frac{2}{9}$ $P(A = 2) = \frac{1}{3}$ $P(A = 5) = \frac{4}{9}$					B1
(i)	<i>y y y</i>					M1
	$(1,1,5) \ "\frac{2}{9} \times "\frac{2}{9} \times "\frac{4}{9}"$	213	<u>or</u> (1,5,5) $\left[\frac{2}{9}\right]$	$\times \frac{4^{"}}{9} \times \frac{4^{"}}{9} \times 3 = \frac{3}{2^{4}}$	<u>2</u> 43	M1
	$(1,2,5) \ "\frac{2}{9} \times "\frac{1}{3} \times "\frac{4}{9}"$	01				M1
	$P(B=4) = \frac{16}{243} + \frac{32}{243} - \frac{32}{2$	$+\frac{16}{81} = \frac{32}{\underline{81}}$				A1
(ii)	$P(B=0) = \left(\left[\frac{n}{2}\right]^{3} + \left(\left[\frac{n}{3}\right]^{3} + \left(\left[\frac{n}{4}\right]^{n}\right]^{3} + \left(\left[\frac{n}{4}\right]^{n}\right]^{3} = \frac{11}{81}$					M1
	$P(B=1) = 3 \times \frac{2}{9} \times \left(\frac{1}{3}\right)^2 + 3 \times \frac{1}{3} \times \left(\frac{2}{9}\right)^2 = \frac{10}{81} \text{ or } P(B=3) = 3 \times \frac{1}{3} \times \left(\frac{4}{9}\right)^2 + 3 \times \frac{4}{9} \times \left(\frac{1}{3}\right)^2 = \frac{28}{81}$					M1
	$1 - \frac{11}{81} - \frac{10}{81} - \frac{32}{81} = \frac{28}{81} \qquad \underline{\text{or}} 1 - \frac{11}{81} - \frac{28}{81} - \frac{32}{81} = \frac{10}{81}$					M1
	b	0	1	3	4	B1
	P(B=b)	$\frac{11}{81}$	$\frac{10}{81}$	$\frac{28}{81}$	$\frac{32}{81}$	A1
						(10) Total 10
	Notes					
	B1: for writing or us	-	-			
(i)						
	2nd M1: for $p \times p \times q \times 3$ or $p \times q \times q \times 3$ where p and q are probabilities with $(p+q) < 1$ and M1: for $p \times q \times q \times q \times q$ and a are probabilities with $(p+q) < 1$					
	3rd M1: for $p \times q \times r \times 6$ where p, q and r are probabilities with $(p + q + r) = 1$					
	A1: for $\frac{32}{81}$ or awrt 0.395 [Calc: 0.3950617]					
(ii)	1 st M1: for $p^3 + q^3 + r^3$ (for their <i>p</i> , <i>q</i> and <i>r</i>)					
	2nd M1: for $3 \times p \times (q)^2 + 3 \times q \times (p)^2$ or $3 \times q \times (r)^2 + 3 \times r \times (q)^2$ (for their <i>p</i> , <i>q</i> and <i>r</i>)					
	3 rd M1: for use of all probabilities of $P(B = b)$ adding to 1 [Must have 3, 4 or 5 values for b]					
	B1: for ranges 0, 1, 3 and 4 with none omitted and no extras. Allow extras if assigned probability of 0					
	A1: for a fully correct probability distribution.If A0 scored in (i) and all other marks scored in (ii) and correct prob's for 2 values of b : award A1 in (ii)					
SC A0 in (i)	If AO scored in (i) and	all other marks	scored in (ii) and a	arrect prob's for 2	values of b · award	1 in (ii)

Question Number	Scheme	Marks			
5 (a)(i)	If $y = 0$ then $1 - (\alpha + \beta y^2) = 0$ $\therefore \alpha = 1$ *	Blcso			
(ii)	If $y = 5$ then $1 - (\alpha + \beta y^2) = 1$				
	$1+25\beta=0 \therefore \beta = -\frac{1}{25} \qquad *$	B1cso			
	25	(2)			
	$F(y) = \frac{1}{y^2} + \frac{1}{y^2} + \frac{1}{y^2} = \frac{1}{y^2} + \frac{1}{y^2}$				
(D)	$F(y) = \frac{1}{25}y^2$ so $f(y) = \frac{dF(y)}{dy} = \frac{2}{25}y$	M1			
	$\therefore [f(y) =]\begin{cases} \frac{2}{25}y & 0 \le y \le 5\\ 0 & \text{otherwise} \end{cases}$				
	$\therefore [\mathbf{f}(y) =] \{ 25^{\circ} \\ 0 \\ 1 \\ 0 \\ 0$	A1			
	(0 otherwise	(2)			
	$\begin{bmatrix} (11) (5) & 1 (5)^2 \end{bmatrix} 8$	(2)			
(c)	$P\left(R > \frac{11}{5}\right) = P\left(Y > \frac{5}{3}\right) = 1 - \frac{1}{25} \times \left(\frac{5}{3}\right)^2 = \begin{vmatrix} \frac{8}{9} & \text{oe} \end{vmatrix}$	B1			
	$\frac{3d - \frac{11}{5}}{3d - d} = \frac{8}{9} \text{oe} \underline{\text{or}} \frac{\frac{11}{5} - d}{3d - d} = \frac{1}{9} \text{oe}$	M1			
	$d = \frac{9}{5}$ oe	A1			
	S≡	(3)			
	$P\left(Y < \frac{11}{5}\right) = \frac{121}{625}$ or 0.1936				
(a)	$\left(1 \left(\frac{1}{5}\right) - \frac{1}{625}\right) = \frac{0}{625}$	B1			
	[Let G = the number of spins with distance < 2.2 m]				
	$\left[\mathbf{P}(G \ge 5) = \right]$				
	$\left(\left(\frac{1}{9}\right)^{3} \times \left(\frac{121}{625}\right)^{3} + 3 \times \left(\frac{1}{9}\right)^{2} \times \left(\frac{8}{9}\right) \times \left(\frac{121}{625}\right)^{3} + 3 \times \left(\frac{1}{9}\right)^{3} \times \left(\frac{121}{625}\right)^{2} \times \left(\frac{504}{625}\right)^{2} = 3 \times \left(\frac{121}{625}\right)^{2} \times \left(\frac{121}{625}\right)^{2} \times \left(\frac{121}{625}\right)^{2} \times \left(\frac{121}{625}\right)^{2} = 3 \times \left(\frac{121}{625}\right)^{2} \times $	M1, M1			
	= 0.000 373226 awrt <u>0.000 373</u>	A1			
		(4) Total 11			
	Notes I otal				
(a) (i)					
(ii)	B1: for stating or using that when $y = 5$ then $\alpha + \beta y^2 = 0$ and setting up the equation leading to $\beta = -\frac{1}{25}$				
		25			
(b)	M1: for differentiating. Implied by $\pm \frac{2}{25''}y$ can ft their value of β				
	A1: for a fully correct $f(y)$ defined for the whole range.				
(c)					
	M1: for LHS = p where $0A1: for 9 or any exact equivalent e.g. 1.8$				
	A1: for $\frac{9}{5}$ or any exact equivalent e.g. 1.8				
(d)	B1: for $\frac{121}{625}$ or awrt 0.194 This mark could be implied by a correct answer.				
	1 st M1: for $p^3q^3 + np^2(1-p)q^3 + np^3q^2(1-q)$ where p and q are probabilities and n is an integer > 0				
	2nd M1: for $p^3q^3 + 3p^2(1-p)q^3 + 3p^3q^2(1-q)$ where <i>p</i> and <i>q</i> are probabilities.				
	A1: for awrt 0.000 373				

Question Number	Scheme	Marks			
6. (i)	<i>z</i> = 1.25				
	$\frac{187.5 - \mu}{\sigma} = 1.25$	M1 M1 A1			
	$187.5 - \mu = 1.25\sigma$				
	$\mu = 225 p$	M1			
	$\sigma = \sqrt{225 p(1-p)}$	M1			
	$(187.5 - 225p)^2 = (1.25)^2 \times 225p(1-p)$ or $(150 - 180p)^2 = 225p(1-p)$ (o.e.)	M1			
	e.g. $900(5-6p)^2 = 225(p-p^2) \implies 4(25-60p+36p^2) = p-p^2$	A1*			
	Leading to $145p^2 - 241p + 100 = 0*$	AI			
(ii)	$\left[(29p-25)(5p-4) = 0 \Longrightarrow \right] \qquad p = 0.8 \underline{\text{or}} p = \frac{25}{29} \text{ (accept: } 0.862(0689)) $	M1			
	[p=] 0.8 because 0.862 gives a mean greater than 188 (oe)	A1			
		(10) Total 10			
	Notes	1000110			
(i)	B1: for 1.25 or better (calculator gives: 1.25027)				
	1 st M1: for attempting to use a continuity correction i.e. for sight of 188 ± 0.5				
	2nd M1: for standardising using μ and σ or np and $\sqrt{np(1-p)}$ (Condone letter <i>n</i> or any integer > 0)				
	1 st A1: for a correct equation with compatible signs, allow 1.250 If using a value for <i>n</i> it must be 225 3^{rd} M1: for $\mu = 225p$ seen at any stage in the working.				
	4th M1: for $\sigma = \sqrt{225p(1-p)}$ seen at any stage in the working. Must be for σ not $\sigma^2 = 225p(1-p)$				
	 5th M1: for squaring to get a quadratic equation in p 2nd A1*: dep on all previous Ms and use of 1.25 (with correct sign) for at least 1 correct intermediate step 				
(ii)	from a correct quadratic equation e.g one of those in scheme for 5 th M1 M1: for solving the quadratic correctly–leading to $p = \dots$ or implied by 0.8 or awrt 0.862 A1: for 0.8 and a correct reason to eliminate 0.862				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom